Abstract

Toroidal Graphs
We say that a graph $\bar{\Gamma}=(V, E)$ is a bipartite, toroidal graph if

- $\bar{\Gamma}$ can be embedded in the torus $\mathbb{T}^{2}(\mathbb{R})$ without crossings yet cannot be embedded in sphere $S^{2}(\mathbb{R})$ without crossings, and
- the vertices $V=B \cup W$ are a disjoint union of "black" vertices B and "white" vertices W such that no vertex $P \in B(P \in W$, respectively) is connected by an edge which lands in B again (W again, respectively).
Even if Γ is a toroidal graph which is not bipartite, we turn Γ into a bipartite graph $\bar{\Gamma}=(B \cup W, E)$ via a subdivision:
- color the vertices B of Γ as "black"
- color the midpoints W of the edges of Γ as "white" and
- let the edges E be the subdivided edges of Γ.

Example: Complete Bipartite Graphs The Complete Bipartite Graph $K_{m, n}$ is a graph with $|V|=m+n$ vertices and $|E|=m n$ edges, where each of the $|B|=m$ "black" vertices is connected by an edge to each of the $|W|=n$ "white" vertices.
In 1964, Gerhard Ringel showed $K_{m, n} \hookrightarrow X$ can be embedded on a compact connected Riemann surface X of genus g without edge crossings, where $|V|-$ $|E|+|F|=2-2 g$ in terms of

$$
g=\left\lfloor\frac{(m-2)(n-2)+3}{4}\right\rfloor
$$

Hence the only complete bipartite graphs $K_{m, n}$ which are toroidal graph correspond to the pairs m, n, $\in\{3,3),(3,4),(3,5),(3,6),(4,4)\}$. Th

$$
\text { graph } K_{3,3} \text { is called the Utility Grap }
$$

Degree Sequences

Let $\bar{\Gamma}=(V, E)$ be a bipartite, toroidal graph. Upon writing F as the collec tion of midpoints of faces of $\bar{\Gamma}$, denote the Degree Sequence of $\bar{\Gamma}$ as the multiset

$$
\mathcal{D}=\left\{\left\{e_{P} \mid P \in B\right\},\left\{e_{P} \mid P \in W\right\},\left\{e_{P} \mid P \in F\right\}\right\}
$$

where e_{P} is the number of edges emanating from each "black" vertex $P \in B$ for the first component, "white vertex $P \in W$ for the second component, and
e_{P} is the number of "white" vertices surrounding each face midpoint $P \in F$ for the third component. The number of edges of $\bar{\Gamma}$ is given by the Degree Sum Formula
$N=\sum_{P \in B} e_{P}=\sum_{P \in W} e_{P}=\sum_{P \in F} e_{P}=|B|+|W|+|F|=|E|$.
Example: The Möbius Ladder

The Möbius Ladder M_{n} is a toroidal graph. In fact, since $n=2 m$ must be even, the subdivision of M_{n} has $N=6 \mathrm{~m}$ edges and has the degree sequence $\mathcal{D}=\{\frac{\{3,3, \ldots, 3\}}{2 m \text { copies }}, \underbrace{\{2,2, \ldots, 2\}}_{3 m \text { copies }}, \underbrace{\{4, \ldots, 4,2 m+4\}}_{(m-1) \text { copies of } 4}\}$
 Möbius Ladder

Example: Toroidal Cubic Graphs

A toroidal graph Γ is said to be a Cubic Graph if it is 3 -regu
its subdivision $\bar{\Gamma}$ is a graph with a degree sequence in the form

$$
\mathcal{D}=\{\underbrace{\{3,3, \ldots, 3\}}_{2 n \text { copies }}, \underbrace{\{2,2, \ldots, 2\}}_{3 n \text { copies }},\left\{e_{P} \mid P \in F\right\}\}
$$

A toroidal cubic graph has $|B|=2 n$ vertices, $|W|=3 n$ edges, and $|F|=n$
faces where the set $\left\{e_{P} \mid P \in F\right\}$ is a partition of $N=6 n$. faces where the set $\left\{e_{P} \mid P \in F\right\}$ is a partition of $N=6 n$.
In particular, if the faces are hexagonal, then its subdivision is a graph with a degree sequence in the form

$$
\mathcal{D}=\{\underbrace{\{3,3, \ldots, 3\}}_{2 n \text { copies }}, \underbrace{\{2,2, \ldots, 2\}}_{3 n \text { copies }}, \underbrace{\{6,6, \ldots, 6\}}_{n \text { copies }}\}
$$

$$
\text { as a collection of three partitions of } N=6 n \text {. }
$$

Monodromy Group

We associate a group to $\bar{\Gamma}$ as follows. Label the edges in E from 1 through N Since the compact, connected surface X is oriented, read off the labels counterclockwise of the edges incident to each vertex $P \in B(P \in W$, respectively) to find the integers $B_{P, 1}, B_{P, 2}, \ldots, B_{P, e_{P}}\left(W_{P, 1}, W_{P, 2}, \ldots, W_{P, e_{P}}\right.$, respec tively). Define the Monodromy Group for an embedding $\bar{\Gamma} \hookrightarrow \mathbb{T}^{2}(\mathbb{R})$ as

$$
\begin{aligned}
& \sigma_{0}=\prod_{P \in B}\left(B_{P, 1} B_{P, 2} \cdots B_{P, e_{P}}\right) \\
& \sigma_{1}=\prod_{P \in W}\left(W_{P, 1} W_{P, 2} \cdots W_{P, e_{P}}\right)
\end{aligned}
$$

This is subgroup of S_{N}. It is transitive if and only if $\bar{\Gamma}$ is path connected

The Petersen graph $G(5,2)$ is a toroidal graph. Its subdivision is a graph with a degree sequence

$$
\mathcal{D}=\{\underbrace{\{3,3, \ldots, 3}_{10 \text { vertices }}, \underbrace{\{2,2, \ldots, 2\}}_{15 \text { edges }},\{5,5,5,6,9\}\}
$$

as a collection of three partitions of $N=|B|+|W|+|F|=30$.
One monodromy group associated with this graph is $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ as a transitive subgroup of S_{30} generated by

$$
\sigma_{0}=(135)(769)(131110)(22921)(41918)(12820)(82425)(141522)(161723)(302627)
$$

 $\sigma_{\infty}=(1682629)(114213028)(1820272523)(417151395)(222164771012193)$

Acknowledgements
Dr. Edray Herber Goins

- Abhishek Parab

Dr. Gregey Buzzard / Department of Mathematics
Coilege of Science

- National Science Foundation (DMS-1560394)

Examples of Toroidal Cubic Graphs

